Multiple Imputation Methods for Missing Multilevel Ordinal Outcomes

09/26/2022
by   Mei Dong, et al.
0

Multiple imputation (MI) is an established technique to handle missing data in observational studies. Joint modeling (JM) and fully conditional specification (FCS) are commonly used methods for imputing multilevel clustered data. However, MI approaches for ordinal clustered outcome variables have not been well studied, especially when there is informative cluster size (ICS). The purpose of this study is to describe different imputation and analysis strategies for the multilevel ordinal outcome when ICS exists. We conducted comprehensive Monte Carlo simulation studies to compare five different methods: complete case analysis (CCA), FCS, FCS+CS (include cluster size (CS) when performing the imputation), JM, and JM+CS under different scenarios. We evaluated their performances using an proportional odds logistic regression model estimated with cluster weighted generalized estimating equations (CWGEE). The simulation results show that including cluster size in imputation can significantly improve imputation accuracy when ICS exists. FCS provides more accurate and robust estimation than JM, followed by CCA for multilevel ordinal outcomes. We further applied those methods to a real dental study.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset