Multiple change-point detection for Poisson processes

02/17/2023
by   C. Dion-Blanc, et al.
0

Change-point detection aims at discovering behavior changes lying behind time sequences data. In this paper, we investigate the case where the data come from an inhomogenous Poisson process or a marked Poisson process. We present an offline multiple change-point detection methodology based on minimum contrast estimator. In particular we explain how to deal with the continuous nature of the process together with the discrete available observations. Besides, we select the appropriate number of regimes through a cross-validation procedure which is really convenient here due to the nature of the Poisson process. Through experiments on simulated and realworld datasets, we show the interest of the proposed method. The proposed method has been implemented in the R package.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro