Multiphonic modeling using Impulse Pattern Formulation (IPF)

01/14/2022
by   Simon Linke, et al.
0

Multiphonics, the presence of multiple pitches within the sound, can be produced in several ways. In wind instruments, they can appear at low blowing pressure when complex fingerings are used. Such multiphonics can be modeled by the Impulse Pattern Formulation (IPF). This top-down method regards musical instruments as systems working with impulses originating from a generating entity, travel through the instrument, are reflected at various positions, and are exponentially damped. Eventually, impulses return to the generating entity and retrigger or interact with subsequent impulses. Due to this straightforward approach, the IPF can explain fundamental principles of complex dynamic systems. While modeling wind instruments played with blowing pressures at the threshold of tone onset, the IPF captures transitions between regular periodicity at nominal pitch, bifurcations, and noise. This corresponds to behavior found in wind instruments where multiphonics appear at the transition between noise and regular musical note regimes. Using the IPF, complex fingerings correspond to multiple reflection points at open finger holes with different reflection strengths. Multiphonics can be modeled if reflection points farther away show higher reflection strength and thus, disrupt periodic motion. The IPF can also synthesize multiphonic sounds by concatenating typical wind instrument waveforms at adjacent impulse time points.

READ FULL TEXT

page 9

page 11

research
04/27/2021

Batebit Controller: Popularizing Digital Musical Instruments Development Process

In this paper, we present an ongoing research project related to popular...
research
07/14/2021

Leveraging Hierarchical Structures for Few-Shot Musical Instrument Recognition

Deep learning work on musical instrument recognition has generally focus...
research
12/06/2021

Modeling synchronization in human musical rhythms using Impulse Pattern Formulation (IPF)

When musicians perform in an ensemble, synchronizing to a mutual pace is...
research
03/26/2019

Conditioning a Recurrent Neural Network to synthesize musical instrument transients

A recurrent Neural Network (RNN) is trained to predict sound samples bas...
research
09/29/2020

Bespoke Neural Networks for Score-Informed Source Separation

In this paper, we introduce a simple method that can separate arbitrary ...
research
06/16/2019

Audio Transport: A Generalized Portamento via Optimal Transport

This paper proposes a new method to interpolate between two audio signal...
research
08/29/2018

Extended playing techniques: The next milestone in musical instrument recognition

The expressive variability in producing a musical note conveys informati...

Please sign up or login with your details

Forgot password? Click here to reset