Multinomial Goodness-of-Fit Based on U-Statistics: High-Dimensional Asymptotic and Minimax Optimality

12/21/2018
by   Ilmun Kim, et al.
0

We consider multinomial goodness-of-fit tests in the high-dimensional regime where the number of bins increases with the sample size. In this regime, Pearson's chi-squared test can suffer from low power due to the substantial bias as well as high variance of its statistic. To resolve these issues, we introduce a family of U-statistic for multinomial goodness-of-fit and study their asymptotic behaviors in high-dimensions. Specifically, we establish conditions under which the considered U-statistic is asymptotically Poisson or Gaussian, and investigate its power function under each asymptotic regime. Furthermore, we introduce a class of weights for the U-statistic that results in minimax rate optimal tests.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro