Multimodal Learning on Graphs for Disease Relation Extraction

03/16/2022
by   Yucong Lin, et al.
0

Objective: Disease knowledge graphs are a way to connect, organize, and access disparate information about diseases with numerous benefits for artificial intelligence (AI). To create knowledge graphs, it is necessary to extract knowledge from multimodal datasets in the form of relationships between disease concepts and normalize both concepts and relationship types. Methods: We introduce REMAP, a multimodal approach for disease relation extraction and classification. The REMAP machine learning approach jointly embeds a partial, incomplete knowledge graph and a medical language dataset into a compact latent vector space, followed by aligning the multimodal embeddings for optimal disease relation extraction. Results: We apply REMAP approach to a disease knowledge graph with 96,913 relations and a text dataset of 1.24 million sentences. On a dataset annotated by human experts, REMAP improves text-based disease relation extraction by 10.0 disease knowledge graphs with text information. Further, REMAP leverages text information to recommend new relationships in the knowledge graph, outperforming graph-based methods by 8.4 Discussion: Systematized knowledge is becoming the backbone of AI, creating opportunities to inject semantics into AI and fully integrate it into machine learning algorithms. While prior semantic knowledge can assist in extracting disease relationships from text, existing methods can not fully leverage multimodal datasets. Conclusion: REMAP is a multimodal approach for extracting and classifying disease relationships by fusing structured knowledge and text information. REMAP provides a flexible neural architecture to easily find, access, and validate AI-driven relationships between disease concepts.

READ FULL TEXT

page 19

page 20

research
10/19/2022

Knowledge Graph Enhanced Relation Extraction Datasets

Knowledge-enhanced methods that take advantage of auxiliary knowledge gr...
research
03/18/2022

BIOS: An Algorithmically Generated Biomedical Knowledge Graph

Biomedical knowledge graphs (BioMedKGs) are essential infrastructures fo...
research
06/07/2023

Leveraging Knowledge Graph Embeddings to Enhance Contextual Representations for Relation Extraction

Relation extraction task is a crucial and challenging aspect of Natural ...
research
01/22/2020

A Neural Architecture for Person Ontology population

A person ontology comprising concepts, attributes and relationships of p...
research
02/10/2016

Knowledge Transfer with Medical Language Embeddings

Identifying relationships between concepts is a key aspect of scientific...
research
08/07/2023

Establishing Trust in ChatGPT BioMedical Generated Text: An Ontology-Based Knowledge Graph to Validate Disease-Symptom Links

Methods: Through an innovative approach, we construct ontology-based kno...
research
01/15/2020

DSR: A Collection for the Evaluation of Graded Disease-Symptom Relations

The effective extraction of ranked disease-symptom relationships is a cr...

Please sign up or login with your details

Forgot password? Click here to reset