DeepAI AI Chat
Log In Sign Up

Multimedia Crowdsourcing with Bounded Rationality: A Cognitive Hierarchy Perspective

04/22/2019
by   Qi Shao, et al.
The Chinese University of Hong Kong
0

In multimedia crowdsourcing, the requester's quality requirements and reward decisions will affect the workers' task selection strategies and the quality of their multimedia contributions. In this paper, we present a first study on how the workers' bounded cognitive rationality interacts with and affects the decisions and performance of a multimedia crowdsourcing system. Specifically, we consider a two-stage model, where a requester first determines the reward and the quality requirement for each task, and the workers select the tasks to accomplish accordingly. First, we consider the benchmark case where users are fully rational, and derive the requester's optimal rewards and quality requirements for the tasks. Next, we focus on the more practical bounded rational case by modeling the workers' task selection behaviors using the cognitive hierarchy theory. Comparing with the fully rational benchmark, we show that the requester can increase her profit by taking advantage of the workers' bounded cognitive rationality, especially when the workers' population is large or the workers' average cognitive level is low. When the workers' average cognitive level is very high, however, the equilibrium under the practical bounded rational model converges to that under the benchmark fully rational model. It is because workers at different levels make decisions sequentially and high cognitive level workers can accurately predict other users' strategies. Under both the fully and bounded rational models, we show that if workers are heterogeneous but one type of workers (either the high or the low quality) dominates the platform, the requester cannot make a higher profit by setting different quality requirements for different tasks.

READ FULL TEXT
04/22/2019

Multimedia Crowdsourcing with Bounded Rationality: A Cognitive Hierarchy Prospective

In multimedia crowdsourcing, the requester's quality requirements and re...
06/01/2018

Inference Aided Reinforcement Learning for Incentive Mechanism Design in Crowdsourcing

Incentive mechanisms for crowdsourcing are designed to incentivize finan...
06/04/2021

On the Design of Strategic Task Recommendations for Sustainable Crowdsourcing-Based Content Moderation

Crowdsourcing-based content moderation is a platform that hosts content ...
09/10/2021

Automated Machine Learning, Bounded Rationality, and Rational Metareasoning

The notion of bounded rationality originated from the insight that perfe...
02/06/2023

Toward a normative theory of (self-)management by goal-setting

People are often confronted with problems whose complexity exceeds their...
02/08/2023

AVeCQ: Anonymous Verifiable Crowdsourcing with Worker Qualities

In crowdsourcing systems, requesters publish tasks, and interested worke...
01/17/2019

Beyond monetary incentives: experiments in paid microtask contests modelled as continuous-time markov chains

In this paper, we aim to gain a better understanding into how paid micro...