Multilevel Hybrid Split Step Implicit Tau-Leap
In biochemically reactive systems with small copy numbers of one or more reactant molecules, the dynamics are dominated by stochastic effects. To approximate those systems, discrete state-space and stochastic simulation approaches have been shown to be more relevant than continuous state-space and deterministic ones. These stochastic models constitute the theory of Stochastic Reaction Networks (SRNs). In systems characterized by having simultaneously fast and slow timescales, existing discrete space-state stochastic path simulation methods, such as the stochastic simulation algorithm (SSA) and the explicit tau-leap (explicit-TL) method, can be very slow. In this talk, we propose a novel implicit scheme, split-step implicit tau-leap (SSI-TL), to improve numerical stability and provide efficient simulation algorithms for those systems. Furthermore, to estimate statistical quantities related to SRNs, we propose a novel hybrid Multilevel Monte Carlo (MLMC) estimator in the spirit of the work by Anderson and Higham (SIAM Multiscal Model. Simul. 10(1), 2012). This estimator uses the SSI-TL scheme at levels where the explicit-TL method is not applicable due to numerical stability issues, and then, starting from a certain interface level, it switches to the explicit scheme. We present numerical examples that illustrate the achieved gains of our proposed approach in this context.
READ FULL TEXT