DeepAI AI Chat
Log In Sign Up

Multilevel Hierarchical Decomposition of Finite Element White Noise with Application to Multilevel Markov Chain Monte Carlo

by   Hillary R. Fairbanks, et al.

In this work we develop a new hierarchical multilevel approach to generate Gaussian random field realizations in a scalable manner that is well-suited to incorporate into multilevel Markov chain Monte Carlo (MCMC) algorithms. This approach builds off of other partial differential equation (PDE) approaches for generating Gaussian random field realizations; in particular, a single field realization may be formed by solving a reaction-diffusion PDE with a spatial white noise source function as the righthand side. While these approaches have been explored to accelerate forward uncertainty quantification tasks, e.g. multilevel Monte Carlo, the previous constructions are not directly applicable to multilevel MCMC frameworks which build fine scale random fields in a hierarchical fashion from coarse scale random fields. Our new hierarchical multilevel method relies on a hierarchical decomposition of the white noise source function in L^2 which allows us to form Gaussian random field realizations across multiple levels of discretization in a way that fits into multilevel MCMC algorithmic frameworks. After presenting our main theoretical results and numerical scaling results to showcase the utility of this new hierarchical PDE method for generating Gaussian random field realizations, this method is tested on a three-level MCMC algorithm to explore its feasibility.


Multilevel Delayed Acceptance MCMC with an Adaptive Error Model in PyMC3

Uncertainty Quantification through Markov Chain Monte Carlo (MCMC) can b...

Multilevel quasi Monte Carlo methods for elliptic PDEs with random field coefficients via fast white noise sampling

When solving partial differential equations with random fields as coeffi...

Modeling and simulating depositional sequences using latent Gaussian random fields

Simulating a depositional (or stratigraphic) sequence conditionally on b...

Multilevel Delayed Acceptance MCMC

We develop a novel Markov chain Monte Carlo (MCMC) method that exploits ...

A Massively Parallel Implementation of Multilevel Monte Carlo for Finite Element Models

The Multilevel Monte Carlo (MLMC) method has proven to be an effective v...

On the curvatures of Gaussian random field manifolds

Information geometry is concerned with the application of differential g...