Multigrid reduction preconditioning framework for coupled processes in porous and fractured media

by   Quan M. Bui, et al.

Many subsurface engineering applications involve tight-coupling between fluid flow, solid deformation, fracturing, and similar processes. To better understand the complex interplay of different governing equations, and therefore design efficient and safe operations, numerical simulations are widely used. Given the relatively long time-scales of interest, fully-implicit time-stepping schemes are often necessary to avoid time-step stability restrictions. A major computational bottleneck for these methods, however, is the linear solver. These systems are extremely large and ill-conditioned. Because of the wide range of processes and couplings that may be involved–e.g. formation and propagation of fractures, deformation of the solid porous medium, viscous flow of one or more fluids in the pores and fractures, complicated well sources and sinks, etc.–it is difficult to develop general-purpose but scalable linear solver frameworks. This challenge is further aggravated by the range of different discretization schemes that may be adopted, which have a direct impact on the linear system structure. To address this obstacle, we describe a flexible framework based on multigrid reduction that can produce purely algebraic preconditioners for a wide spectrum of relevant physics and discretizations. We demonstrate its broad applicability by constructing scalable preconditioners for several problems, notably: a hybrid discretization of single-phase flow, compositional multiphase flow with complex wells, and hydraulic fracturing simulations. Extension to other systems can be handled quite naturally. We demonstrate the efficiency and scalability of the resulting solvers through numerical examples of difficult, field-scale problems.


page 8

page 10


A Locally Conservative Mixed Finite Element Framework for Coupled Hydro-Mechanical-Chemical Processes in Heterogeneous Porous Media

This paper presents a mixed finite element framework for coupled hydro-m...

Computational multiphase periporomechanics for unguided cracking in unsaturated porous media

In this article we formulate and implement a computational multiphase pe...

A decoupled, stable, and linear FEM for a phase-field model of variable density two-phase incompressible surface flow

The paper considers a thermodynamically consistent phase-field model of ...

Efficient split-step schemes for fluid-structure interaction involving incompressible generalised Newtonian flows

Blood flow, dam or ship construction and numerous other problems in biom...

A projection method for porous media flow

Flow through porous, elastically deforming media is present in a variety...

Eilmer: an Open-Source Multi-Physics Hypersonic Flow Solver

This paper introduces Eilmer, a general-purpose open-source compressible...

Please sign up or login with your details

Forgot password? Click here to reset