Multiagent Value Iteration Algorithms in Dynamic Programming and Reinforcement Learning

05/04/2020
by   Dimitri Bertsekas, et al.
21

We consider infinite horizon dynamic programming problems, where the control at each stage consists of several distinct decisions, each one made by one of several agents. In an earlier work we introduced a policy iteration algorithm, where the policy improvement is done one-agent-at-a-time in a given order, with knowledge of the choices of the preceding agents in the order. As a result, the amount of computation for each policy improvement grows linearly with the number of agents, as opposed to exponentially for the standard all-agents-at-once method. For the case of a finite-state discounted problem, we showed convergence to an agent-by-agent optimal policy. In this paper, this result is extended to value iteration and optimistic versions of policy iteration, as well as to more general DP problems where the Bellman operator is a contraction mapping, such as stochastic shortest path problems with all policies being proper.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset