Multi-view Gait Recognition based on Siamese Vision Transformer

10/19/2022
by   Yanchen Yang, et al.
0

While the Vision Transformer has been used in gait recognition, its application in multi-view gait recognition is still limited. Different views significantly affect the extraction and identification accuracy of the characteristics of gait contour. To address this, this paper proposes a Siamese Mobile Vision Transformer (SMViT). This model not only focuses on the local characteristics of the human gait space but also considers the characteristics of long-distance attention associations, which can extract multi-dimensional step status characteristics. In addition, it describes how different perspectives affect gait characteristics and generate reliable perspective feature relationship factors. The average recognition rate of SMViT on the CASIA B data set reached 96.4 attain state-of-the-art performance compared to advanced step recognition models such as GaitGAN, Multi_view GAN, Posegait and other gait recognition models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro