Multi-task Maximum Entropy Inverse Reinforcement Learning
Multi-task Inverse Reinforcement Learning (IRL) is the problem of inferring multiple reward functions from expert demonstrations. Prior work, built on Bayesian IRL, is unable to scale to complex environments due to computational constraints. This paper contributes the first formulation of multi-task IRL in the more computationally efficient Maximum Causal Entropy (MCE) IRL framework. Experiments show our approach can perform one-shot imitation learning in a gridworld environment that single-task IRL algorithms require hundreds of demonstrations to solve. Furthermore, we outline how our formulation can be applied to state-of-the-art MCE IRL algorithms such as Guided Cost Learning. This extension, based on meta-learning, could enable multi-task IRL to be performed for the first time in high-dimensional, continuous state MDPs with unknown dynamics as commonly arise in robotics.
READ FULL TEXT