Multi-Target XGBoostLSS Regression
Current implementations of Gradient Boosting Machines are mostly designed for single-target regression tasks and commonly assume independence between responses when used in multivariate settings. As such, these models are not well suited if non-negligible dependencies exist between targets. To overcome this limitation, we present an extension of XGBoostLSS that models multiple targets and their dependencies in a probabilistic regression setting. Empirical results show that our approach outperforms existing GBMs with respect to runtime and compares well in terms of accuracy.
READ FULL TEXT