Multi-step-ahead Prediction from Short-term Data by Delay-embedding-based Forecast Machine

05/16/2020
by   Hao Peng, et al.
6

Making accurate multi-step-ahead prediction for a complex system is a challenge for many practical applications, especially when only short-term time-series data are available. In this work, we proposed a novel framework, Delay-Embedding-based Forecast Machine (DEFM), to predict the future values of a target variable in an accurate and multi-step-ahead manner based on the high-dimensional short-term measurements. With a three-module spatiotemporal architecture, DEFM leverages deep learning to effectively extract both the spatially and sequentially associated information from the short-term dynamics even with time-varying parameters or additive noise. Being trained through a self-supervised scheme, DEFM well fits a nonlinear transformation that maps from the observed high-dimensional information to the delay embeddings of a target variable, thus predicting the future information. The effectiveness and accuracy of DEFM is demonstrated by applications on both representative models and six real-world datasets. The comparison with four traditional prediction methods exhibits the superiority and robustness of DEFM.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset