Multi-stage transfer learning for lung segmentation using portable X-ray devices for patients with COVID-19

10/30/2020
by   Plácido L Vidal, et al.
0

In 2020, the SARS-CoV-2 virus causes a global pandemic of the new human coronavirus disease COVID-19. This pathogen primarily infects the respiratory system of the afflicted, usually resulting in pneumonia and in a severe case of acute respiratory distress syndrome. These disease developments result in the formation of different pathological structures in the lungs, similar to those observed in other viral pneumonias that can be detected by the use of chest X-rays. For this reason, the detection and analysis of the pulmonary regions, the main focus of affection of COVID-19, becomes a crucial part of both clinical and automatic diagnosis processes. Due to the overload of the health services, portable X-ray devices are widely used, representing an alternative to fixed devices to reduce the risk of cross-contamination. However, these devices entail different complications as the image quality that, together with the subjectivity of the clinician, make the diagnostic process more difficult. In this work, we developed a novel fully automatic methodology specially designed for the identification of these lung regions in X-ray images of low quality as those from portable devices. To do so, we took advantage of a large dataset from magnetic resonance imaging of a similar pathology and performed two stages of transfer learning to obtain a robust methodology with a low number of images from portable X-ray devices. This way, our methodology obtained a satisfactory accuracy of 0.9761 ± 0.0100 for patients with COVID-19, 0.9801 ± 0.0104 for normal patients and 0.9769 ± 0.0111 for patients with pulmonary diseases with similar characteristics as COVID-19 (such as pneumonia) but not genuine COVID-19.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 5

page 9

page 17

page 19

page 20

10/15/2021

Automatic Detection of COVID-19 and Pneumonia from Chest X-Ray using Deep Learning

In this study, a dataset of X-ray images from patients with common viral...
08/12/2021

Intelligent computational model for the classification of Covid-19 with chest radiography compared to other respiratory diseases

Lung X-ray images, if processed using statistical and computational meth...
04/07/2020

Deep Learning on Chest X-ray Images to Detect and Evaluate Pneumonia Cases at the Era of COVID-19

Coronavirus disease 2019 (COVID-19) is an infectious disease with first ...
09/26/2020

Potential Features of ICU Admission in X-ray Images of COVID-19 Patients

X-ray images may present non-trivial features with predictive informatio...
10/29/2021

AI-Powered Semantic Segmentation and Fluid Volume Calculation of Lung CT images in Covid-19 Patients

COVID-19 pandemic is a deadly disease spreading very fast. People with t...
05/18/2021

Transfer learning approach to Classify the X-ray image that corresponds to corona disease Using ResNet50 pretrained by ChexNet

Coronavirus adversely has affected people worldwide. There are common sy...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.