Multi-stage feature decorrelation constraints for improving CNN classification performance

08/24/2023
by   Qiuyu Zhu, et al.
0

For the convolutional neural network (CNN) used for pattern classification, the training loss function is usually applied to the final output of the network, except for some regularization constraints on the network parameters. However, with the increasing of the number of network layers, the influence of the loss function on the network front layers gradually decreases, and the network parameters tend to fall into local optimization. At the same time, it is found that the trained network has significant information redundancy at all stages of features, which reduces the effectiveness of feature mapping at all stages and is not conducive to the change of the subsequent parameters of the network in the direction of optimality. Therefore, it is possible to obtain a more optimized solution of the network and further improve the classification accuracy of the network by designing a loss function for restraining the front stage features and eliminating the information redundancy of the front stage features .For CNN, this article proposes a multi-stage feature decorrelation loss (MFD Loss), which refines effective features and eliminates information redundancy by constraining the correlation of features at all stages. Considering that there are many layers in CNN, through experimental comparison and analysis, MFD Loss acts on multiple front layers of CNN, constrains the output features of each layer and each channel, and performs supervision training jointly with classification loss function during network training. Compared with the single Softmax Loss supervised learning, the experiments on several commonly used datasets on several typical CNNs prove that the classification performance of Softmax Loss+MFD Loss is significantly better. Meanwhile, the comparison experiments before and after the combination of MFD Loss and some other typical loss functions verify its good universality.

READ FULL TEXT

page 1

page 2

page 3

page 5

research
04/12/2019

A New Loss Function for CNN Classifier Based on Pre-defined Evenly-Distributed Class Centroids

With the development of convolutional neural networks (CNNs) in recent y...
research
06/18/2022

Redundancy Reduction Twins Network: A Training framework for Multi-output Emotion Regression

In this paper, we propose the Redundancy Reduction Twins Network (RRTN),...
research
06/26/2021

Interflow: Aggregating Multi-layer Feature Mappings with Attention Mechanism

Traditionally, CNN models possess hierarchical structures and utilize th...
research
08/27/2017

Imbalanced Malware Images Classification: a CNN based Approach

Deep convolutional neural networks (CNNs) can be applied to malware bina...
research
03/23/2023

A Confident Labelling Strategy Based on Deep Learning for Improving Early Detection of Knee OsteoArthritis

Knee OsteoArthritis (KOA) is a prevalent musculoskeletal disorder that c...
research
04/17/2020

Adaptive Neuron-wise Discriminant Criterion and Adaptive Center Loss at Hidden Layer for Deep Convolutional Neural Network

A deep convolutional neural network (CNN) has been widely used in image ...
research
04/25/2020

NullSpaceNet: Nullspace Convoluional Neural Network with Differentiable Loss Function

We propose NullSpaceNet, a novel network that maps from the pixel level ...

Please sign up or login with your details

Forgot password? Click here to reset