Multi-Scale Convolutional-Stack Aggregation for Robust White Matter Hyperintensities Segmentation
Segmentation of both large and small white matter hyperintensities/lesions in brain MR images is a challenging task which has drawn much attention in recent years. We propose a multi-scale aggregation model framework to deal with volume-varied lesions. Firstly, we present a specifically-designed network for small lesion segmentation called Stack-Net, in which multiple convolutional layers are 'one-by-one' connected, aiming to preserve rich local spatial information of small lesions before the sub-sampling layer. Secondly, we aggregate multi-scale Stack-Nets with different receptive fields to learn multi-scale contextual information of both large and small lesions. Our model is evaluated on recent MICCAI WMH Challenge Dataset and outperforms the state-of-the-art on lesion recall and lesion F1-score under 5-fold cross validation. In addition, we further test our pre-trained models on a Multiple Sclerosis lesion dataset with 30 subjects under cross-center evaluation. Results show that the aggregation model is effective in learning multi-scale spatial information.
READ FULL TEXT