Multi-resolution Localized Orthogonal Decomposition for Helmholtz problems

04/22/2021
by   Moritz Hauck, et al.
0

We introduce a novel multi-resolution Localized Orthogonal Decomposition (LOD) for time-harmonic acoustic scattering problems that can be modeled by the Helmholtz equation. The method merges the concepts of LOD and operator-adapted wavelets (gamblets) and proves its applicability for a class of complex-valued, non-hermitian and indefinite problems. It computes hierarchical bases that block-diagonalize the Helmholtz operator and thereby decouples the discretization scales. Sparsity is preserved by a novel localization strategy that improves stability properties even in the elliptic case. We present a rigorous stability and a-priori error analysis of the proposed method for homogeneous media. In addition, we investigate the fast solvability of the blocks by a standard iterative method. A sequence of numerical experiments illustrates the sharpness of the theoretical findings and demonstrates the applicability to scattering problems in heterogeneous media.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset