Multi-Microphone Complex Spectral Mapping for Speech Dereverberation
This study proposes a multi-microphone complex spectral mapping approach for speech dereverberation on a fixed array geometry. In the proposed approach, a deep neural network (DNN) is trained to predict the real and imaginary (RI) components of direct sound from the stacked reverberant (and noisy) RI components of multiple microphones. We also investigate the integration of multi-microphone complex spectral mapping with beamforming and post-filtering. Experimental results on multi-channel speech dereverberation demonstrate the effectiveness of the proposed approach.
READ FULL TEXT