Multi-lingual Intent Detection and Slot Filling in a Joint BERT-based Model

07/05/2019
by   Giuseppe Castellucci, et al.
0

Intent Detection and Slot Filling are two pillar tasks in Spoken Natural Language Understanding. Common approaches adopt joint Deep Learning architectures in attention-based recurrent frameworks. In this work, we aim at exploiting the success of "recurrence-less" models for these tasks. We introduce Bert-Joint, i.e., a multi-lingual joint text classification and sequence labeling framework. The experimental evaluation over two well-known English benchmarks demonstrates the strong performances that can be obtained with this model, even when few annotated data is available. Moreover, we annotated a new dataset for the Italian language, and we observed similar performances without the need for changing the model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro