Multi-Level Fine-Tuning: Closing Generalization Gaps in Approximation of Solution Maps under a Limited Budget for Training Data

02/14/2021
by   Zhihan Li, et al.
0

In scientific machine learning, regression networks have been recently applied to approximate solution maps (e.g., potential-ground state map of Schrödinger equation). In this paper, we aim to reduce the generalization error without spending more time in generating training samples. However, to reduce the generalization error, the regression network needs to be fit on a large number of training samples (e.g., a collection of potential-ground state pairs). The training samples can be produced by running numerical solvers, which takes much time in many applications. In this paper, we aim to reduce the generalization error without spending more time in generating training samples. Inspired by few-shot learning techniques, we develop the Multi-Level Fine-Tuning algorithm by introducing levels of training: we first train the regression network on samples generated at the coarsest grid and then successively fine-tune the network on samples generated at finer grids. Within the same amount of time, numerical solvers generate more samples on coarse grids than on fine grids. We demonstrate a significant reduction of generalization error in numerical experiments on challenging problems with oscillations, discontinuities, or rough coefficients. Further analysis can be conducted in the Neural Tangent Kernel regime and we provide practical estimators to the generalization error. The number of training samples at different levels can be optimized for the smallest estimated generalization error under the constraint of budget for training data. The optimized distribution of budget over levels provides practical guidance with theoretical insight as in the celebrated Multi-Level Monte Carlo algorithm.

READ FULL TEXT
research
09/20/2019

A Multi-level procedure for enhancing accuracy of machine learning algorithms

We propose a multi-level method to increase the accuracy of machine lear...
research
11/28/2019

All you need is a good representation: A multi-level and classifier-centric representation for few-shot learning

The main problems of few-shot learning are how to learn a generalized re...
research
04/27/2020

Multi-level neural networks for PDEs with uncertain parameters

A novel multi-level method for partial differential equations with uncer...
research
09/01/2018

Data Dropout: Optimizing Training Data for Convolutional Neural Networks

Deep learning models learn to fit training data while they are highly ex...
research
09/06/2021

Backdoor Attack and Defense for Deep Regression

We demonstrate a backdoor attack on a deep neural network used for regre...
research
09/06/2020

Higher-order Quasi-Monte Carlo Training of Deep Neural Networks

We present a novel algorithmic approach and an error analysis leveraging...
research
04/09/2023

RD-DPP: Rate-Distortion Theory Meets Determinantal Point Process to Diversify Learning Data Samples

In some practical learning tasks, such as traffic video analysis, the nu...

Please sign up or login with your details

Forgot password? Click here to reset