Multi-Granularity Self-Attention for Neural Machine Translation

09/05/2019 ∙ by Jie Hao, et al. ∙ 0

Current state-of-the-art neural machine translation (NMT) uses a deep multi-head self-attention network with no explicit phrase information. However, prior work on statistical machine translation has shown that extending the basic translation unit from words to phrases has produced substantial improvements, suggesting the possibility of improving NMT performance from explicit modeling of phrases. In this work, we present multi-granularity self-attention (Mg-Sa): a neural network that combines multi-head self-attention and phrase modeling. Specifically, we train several attention heads to attend to phrases in either n-gram or syntactic formalism. Moreover, we exploit interactions among phrases to enhance the strength of structure modeling - a commonly-cited weakness of self-attention. Experimental results on WMT14 English-to-German and NIST Chinese-to-English translation tasks show the proposed approach consistently improves performance. Targeted linguistic analysis reveals that Mg-Sa indeed captures useful phrase information at various levels of granularities.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.