Multi-Frame to Single-Frame: Knowledge Distillation for 3D Object Detection

09/24/2020
by   Alireza Fathi, et al.
0

A common dilemma in 3D object detection for autonomous driving is that high-quality, dense point clouds are only available during training, but not testing. We use knowledge distillation to bridge the gap between a model trained on high-quality inputs at training time and another tested on low-quality inputs at inference time. In particular, we design a two-stage training pipeline for point cloud object detection. First, we train an object detection model on dense point clouds, which are generated from multiple frames using extra information only available at training time. Then, we train the model's identical counterpart on sparse single-frame point clouds with consistency regularization on features from both models. We show that this procedure improves performance on low-quality data during testing, without additional overhead.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset