Multi-Fold Gabor, PCA and ICA Filter Convolution Descriptor for Face Recognition
This paper devises a new means of filter diversification, dubbed multi-fold filter convolution (M-FFC), for face recognition. On the assumption that M-FFC receives single-scale Gabor filters of varying orientations as input, these filters are self-cross convolved by M-fold to instantiate a filter offspring set. The M-FFC flexibility also permits cross convolution amongst Gabor filters and other filter banks of profoundly dissimilar traits, e.g., principal component analysis (PCA) filters, and independent component analysis (ICA) filters. The 2-FFC of Gabor, PCA and ICA filters thus yields three offspring sets: (1) Gabor filters solely, (2) Gabor-PCA filters, and (3) Gabor-ICA filters, to render the learning-free and the learning-based 2-FFC descriptors. To facilitate a sensible Gabor filter selection for M-FFC, the 40 multi-scale, multi-orientation Gabor filters are condensed into 8 elementary filters. Aside from that, an average histogram pooling operator is employed to leverage the 2-FFC histogram features, prior to the final whitening PCA compression. The empirical results substantiate that the 2-FFC descriptors prevail over, or on par with, other face descriptors on both identification and verification tasks.
READ FULL TEXT