Multi-Density Attention Network for Loop Filtering in Video Compression

04/08/2021
by   Zhao Wang, et al.
0

Video compression is a basic requirement for consumer and professional video applications alike. Video coding standards such as H.264/AVC and H.265/HEVC are widely deployed in the market to enable efficient use of bandwidth and storage for many video applications. To reduce the coding artifacts and improve the compression efficiency, neural network based loop filtering of the reconstructed video has been developed in the literature. However, loop filtering is a challenging task due to the variation in video content and sampling densities. In this paper, we propose a on-line scaling based multi-density attention network for loop filtering in video compression. The core of our approach lies in several aspects: (a) parallel multi-resolution convolution streams for extracting multi-density features, (b) single attention branch to learn the sample correlations and generate mask maps, (c) a channel-mutual attention procedure to fuse the data from multiple branches, (d) on-line scaling technique to further optimize the output results of network according to the actual signal. The proposed multi-density attention network learns rich features from multiple sampling densities and performs robustly on video content of different resolutions. Moreover, the online scaling process enhances the signal adaptability of the off-line pre-trained model. Experimental results show that 10.18 quality can be achieved over the latest Versatile Video Coding (VVC) standard. The objective performance of the proposed algorithm outperforms the state-of-the-art methods and the subjective quality improvement is obvious in terms of detail preservation and artifact alleviation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset