Multi-classifier prediction of knee osteoarthritis progression from incomplete imbalanced longitudinal data

09/30/2019
by   Paweł Widera, et al.
29

Conventional inclusion criteria used in osteoarthritis clinical trials are not very effective in selecting patients who would benefit the most from a therapy under test. Typically these criteria select majority of patients who show no or limited disease progression during a short evaluation window of the study. As a consequence, less insight on the relative effect of the treatment can be gained from the collected data, and the efforts and resources invested in running the study are not paying off. This could be avoided, if selection criteria were more predictive of the future disease progression. In this article, we formulated the patient selection problem as a multi-class classification task, with classes based on clinically relevant measures of progression (over a time scale typical for clinical trials). Using data from two long-term knee osteoarthritis studies OAI and CHECK, we tested multiple algorithms and learning process configurations (including multi-classifier approaches, cost-sensitive learning, and feature selection), to identify the best performing machine learning models. We examined the behaviour of the best models, with respect to prediction errors and the impact of used features, to confirm their clinical relevance. We found that the model-based selection outperforms the conventional inclusion criteria, reducing by 20-25 of patients who show no progression and making the representation of the patient categories more even. This result indicates that our machine learning approach could lead to efficiency improvements in clinical trial design.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset