Multi-Agent Diverse Generative Adversarial Networks
This paper describes an intuitive generalization to the Generative Adversarial Networks (GANs) to generate samples while capturing diverse modes of the true data distribution. Firstly, we propose a very simple and intuitive multi-agent GAN architecture that incorporates multiple generators capable of generating samples from high probability modes. Secondly, in order to enforce different generators to generate samples from diverse modes, we propose two extensions to the standard GAN objective function. (1) We augment the generator specific GAN objective function with a diversity enforcing term that encourage different generators to generate diverse samples using a user-defined similarity based function. (2) We modify the discriminator objective function where along with finding the real and fake samples, the discriminator has to predict the generator which generated the given fake sample. Intuitively, in order to succeed in this task, the discriminator must learn to push different generators towards different identifiable modes. Our framework is generalizable in the sense that it can be easily combined with other existing variants of GANs to produce diverse samples. Experimentally we show that our framework is able to produce high quality diverse samples for the challenging tasks such as image/face generation and image-to-image translation. We also show that it is capable of learning a better feature representation in an unsupervised setting.
READ FULL TEXT