Multi-agent Communication with Graph Information Bottleneck under Limited Bandwidth
Recent studies have shown that introducing communication between agents can significantly improve overall performance in cooperative Multi-agent reinforcement learning (MARL). In many real-world scenarios, communication can be expensive and the bandwidth of the multi-agent system is subject to certain constraints. Redundant messages who occupy the communication resources can block the transmission of informative messages and thus jeopardize the performance. In this paper, we aim to learn the minimal sufficient communication messages. First, we initiate the communication between agents by a complete graph. Then we introduce the graph information bottleneck (GIB) principle into this complete graph and derive the optimization over graph structures. Based on the optimization, a novel multi-agent communication module, called CommGIB, is proposed, which effectively compresses the structure information and node information in the communication graph to deal with bandwidth-constrained settings. Extensive experiments in Traffic Control and StanCraft II are conducted. The results indicate that the proposed methods can achieve better performance in bandwidth-restricted settings compared with state-of-the-art algorithms, with especially large margins in large-scale multi-agent tasks.
READ FULL TEXT