MTCRNN: A multi-scale RNN for directed audio texture synthesis

11/25/2020 ∙ by M. Huzaifah, et al. ∙ 0

Audio textures are a subset of environmental sounds, often defined as having stable statistical characteristics within an adequately large window of time but may be unstructured locally. They include common everyday sounds such as from rain, wind, and engines. Given that these complex sounds contain patterns on multiple timescales, they are a challenge to model with traditional methods. We introduce a novel modelling approach for textures, combining recurrent neural networks trained at different levels of abstraction with a conditioning strategy that allows for user-directed synthesis. We demonstrate the model's performance on a variety of datasets, examine its performance on various metrics, and discuss some potential applications.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 3

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.