MoRTy: Unsupervised Learning of Task-specialized Word Embeddings by Autoencoding

01/10/2020
by   Nils Rethmeier, et al.
0

Word embeddings have undoubtedly revolutionized NLP. However, pre-trained embeddings do not always work for a specific task (or set of tasks), particularly in limited resource setups. We introduce a simple yet effective, self-supervised post-processing method that constructs task-specialized word representations by picking from a menu of reconstructing transformations to yield improved end-task performance (MORTY). The method is complementary to recent state-of-the-art approaches to inductive transfer via fine-tuning, and forgoes costly model architectures and annotation. We evaluate MORTY on a broad range of setups, including different word embedding methods, corpus sizes and end-task semantics. Finally, we provide a surprisingly simple recipe to obtain specialized embeddings that better fit end-tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset