Moreau–Yosida regularization in DFT

08/10/2022
by   Simen Kvaal, et al.
0

Moreau-Yosida regularization is introduced into the framework of exact DFT. Moreau-Yosida regularization is a lossless operation on lower semicontinuous proper convex functions over separable Hilbert spaces, and when applied to the universal functional of exact DFT (appropriately restricted to a bounded domain), gives a reformulation of the ubiquitous v-representability problem and a rigorous and illuminating derivation of Kohn-Sham theory. The chapter comprises a self-contained introduction to exact DFT, basic tools from convex analysis such as sub- and superdifferentiability and convex conjugation, as well as basic results on the Moreau-Yosida regularization. The regularization is then applied to exact DFT and Kohn-Sham theory, and a basic iteration scheme based in the Optimal Damping Algorithm is analyzed. In particular, its global convergence established. Some perspectives are offered near the end of the chapter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset