More on convergence of Chorin's projection method for incompressible Navier-Stokes equations

09/11/2020
by   Masataka Maeda, et al.
0

Kuroki and Soga [Numer. Math. 2020] proved that a version of Chorin's fully discrete projection method, originally introduced by A. J. Chorin [Math. Comp. 1969], is unconditionally solvable and convergent within an arbitrary fixed time interval to a Leray-Hopf weak solution of the incompressible Navier-Stokes equations on a bounded domain with an arbitrary external force. This paper is a continuation of Kuroki-Soga's work. We show time-global solvability and convergence of our scheme; L^2-error estimates for the scheme in the class of smooth exact solutions; application of the scheme to the problem with a time-periodic external force to investigate time-periodic (Leray-Hopf weak) solutions, long-time behaviors, error estimates, etc.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro