Monte Carlo construction of cubature on Wiener space

08/19/2020
by   Satoshi Hayakawa, et al.
0

In this paper, we investigate application of mathematical optimization to construction of a cubature formula on Wiener space, which is a weak approximation method of stochastic differential equations introduced by Lyons and Victoir (Cubature on Wiener Space, Proc. R. Soc. Lond. A 460, 169–198). After giving a brief review of the cubature theory on Wiener space, we show that a cubature formula of general dimension and degree can be obtained through a Monte Carlo sampling and linear programming. This paper also includes an extension of stochastic Tchakaloff's theorem, which technically yields the proof of our main result.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset