Monads and Quantitative Equational Theories for Nondeterminism and Probability

05/15/2020 ∙ by Matteo Mio, et al. ∙ 0

The monad of convex sets of probability distributions is a well-known tool for modelling the combination of nondeterministic and probabilistic computational effects. In this work we lift this monad from the category of sets to the category of metric spaces, by means of the Hausdorff and Kantorovich metric liftings. Our main result is the presentation of this lifted monad in terms of the quantitative equational theory of convex semilattices, using the framework of quantitative algebras recently introduced by Mardare, Panangaden and Plotkin.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.