Modulus consensus in discrete-time signed networks and properties of special recurrent inequalities

03/20/2017 ∙ by Anton V. Proskurnikov, et al. ∙ University of Groningen IEEE 0

Recently the dynamics of signed networks, where the ties among the agents can be both positive (attractive) or negative (repulsive) have attracted substantial attention of the research community. Examples of such networks are models of opinion dynamics over signed graphs, recently introduced by Altafini (2012,2013) and extended to discrete-time case by Meng et al. (2014). It has been shown that under mild connectivity assumptions these protocols provide the convergence of opinions in absolute value, whereas their signs may differ. This "modulus consensus" may correspond to the polarization of the opinions (or bipartite consensus, including the usual consensus as a special case), or their convergence to zero. In this paper, we demonstrate that the phenomenon of modulus consensus in the discrete-time Altafini model is a manifestation of a more general and profound fact, regarding the solutions of a special recurrent inequality. Although such a recurrent inequality does not provide the uniqueness of a solution, it can be shown that, under some natural assumptions, each of its bounded solutions has a limit and, moreover, converges to consensus. A similar property has previously been established for special continuous-time differential inequalities (Proskurnikov, Cao, 2016). Besides analysis of signed networks, we link the consensus properties of recurrent inequalities to the convergence analysis of distributed optimization algorithms and the problems of Schur stability of substochastic matrices.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

I Introduction

In the recent years protocols for consensus and synchronization in multi-agent networks have been thoroughly studied [1, 2, 3, 4]. Much less studied are “irregular” behaviors, exhibited by many real-world networks, such as e.g. desynchronization [5] and chaos [6]. An important step in understanding these complex behaviors is to elaborate mathematical models for “partial” or cluster synchronization, or simply clustering [5, 7, 8, 9]. In social influence theory, this problem is known as the community cleavage problem or Abelson’s diversity puzzle  [10, 11]: to disclose mechanisms that hinder reaching consensus among social actors and lead to splitting of their opinions into several clusters.

One reason for clustering in multi-agent networks is the presence of “negative” (repulsive, antagonistic) interactions among the agents [8]. Models of signed (or “coopetition”) networks with positive and negative couplings among the nodes describe a broad class of real-world systems, from molecular ensembles [12] to continental supply chains [13]. Positive and negative relations among social actors can express, respectively, trust (friendship) or distrust (hostility). Negative ties among the individuals may also result from the reactance or boomerang effects, first described in [14]: an individual may not only resist the persuasion process, but even adopt an attitude that is contrary to the persuader’s one.

A simple yet instructive model of continuous-time opinion dynamics over signed networks has been proposed by Altafini [15, 16] and extended to the discrete-time case in [17]. In the recent years, Altafini-type coordination protocols over static and time-varying signed graphs have been extensively studied, see e.g.  [18, 19, 20, 21, 22, 23, 24, 25]. It has been shown that under mild connectivity assumptions these models exhibit consensus in absolute value, or modulus consensus: the agents’ opinions agree in modulus yet may differ in signs. The modulus consensus may correspond to the asymptotic stability of the network (the opinions of all individuals converge to zero), usual consensus (convergence of the opinions to the same value, depending on the initial condition) and polarization, or “bipartite consensus”: the agents split into two groups, converging to the opposite opinions.

In the recent works [26, 27] it has been shown that the effect of modulus consensus in the continuous-time Altafini model is in fact a manifestation of a more profound result, concerned with the special class of differential inequalities


where stands for the Laplacian matrix of a time-varying weighted graph. Although the inequality (1) is a seemingly “loose” constraint, any of its bounded solutions (under natural connectivity assumptions) converges to a consensus equilibrium (this property is called consensus dichotomy). This implies, in particular, the modulus consensus in the Altafini model [26, 27]

since the vector of the opinions’ absolute values obeys the inequality (

1). In this paper, we extend the theory of differential inequalities to the discrete-time case, where (1) is replaced by the recurrent inequality with being a sequence of stochastic matrices. We establish the consensus dichotomy criteria for these inequalities, which imply the recent results on modulus consensus in the discrete-time Altafini model [17, 23]. We also apply the recurrent inequalities to some problems of matrix theory and the analysis of distributed algorithms for optimization and linear equations solving.

Ii Problem Setup

We start with preliminaries and introducing some notation.

Ii-a Preliminaries

First we introduce some notation. A vector is non-negative () if . Given two vectors , we write (respectively, ) if (respectively, ). The vector of ones is denoted by . Given a matrix , we use to denote the matrix of element-wise absolute values (the same rule applies to vectors). A matrix is stochastic if its entries are non-negative and all rows sum to , i.e. . We use to denote the spectral radius of a square matrix . The standard Euclidean norm of a vector is denoted by .

A non-negative matrix can be associated to a (directed) weighted graph111We assume that the reader is familiar with the standard concepts of graph theory, regarding directed graphs and their connectivity properties, e.g. walks (or paths), cycles and strongly connected components [28, 29]. , whose set of arcs is .

Ii-B Recurrent inequalities and consensus dichotomy.

In this paper, we are interested in the solutions of the following discrete-time, or recurrent, inequality


where is a sequence of vectors and stands for a sequence of stochastic matrices.

Replacing the inequality in (2) by the equality, one obtains the well-known averaging, or consensus protocol [30, 31, 32]


dating back to the early works on social influence [33, 34], rational decision making [35] and distributed optimization [36]. The algorithm (3) may be interpreted as the dynamics of opinions222In the broad sense, “opinion” is just a scalar quantity of interest; it can stand for e.g. a physical parameters or an attitude to some event or issue. formation in a network of agents. At each step of the opinion iteration agent calculates the weighted average of its own opinion and the others’ opinions; this average is used as the new opinion of the th agent . The graph naturally represents the interaction topology of the network at step . Agent is influenced by agent if , otherwise the th agent’s opinion plays no role in the formation of the new agent ’s opinion .

A similar interpretation can be given to the inequality (2). Unlike the algorithm (3), the opinion of agent at each step of opinion formation is not uniquely determined by the opinions from the previous step, but is only constrained by them . The weight stands for the contribution of agent ’s opinion to this constraint, and in this sense it can also be treated as the “influence” weight. The inequality (2) does not provide the solution’s uniqueness for a given , but only guarantees the existence of an upper bound for the solutions.

Proposition 1

Any solution of (2) obeys the inequality

Proposition 1 is proved via straightforward induction on . By definition, ; if then .

Although many solutions of (2) are unbounded from below, under certain assumptions any its bounded solution converges to a consensus equilibrium , where . A similar property, called consensus dichotomy333The term dichotomy originates from ODE theory. A system is dichotomic if any of its solutions either grows unbounded or has a finite limit [37]. has been established in [26, 27] for the differential inequalities (1).

Definition 1

The inequality (2) is said to be dichotomic if any of its bounded (from below) solutions has a limit . It is called consensus dichotomic if these limits are consensus equilibria , where .

The main goal of this paper is to disclose criteria of consensus dichotomy in the recurrent inequalities (2). In Section IV we discuss applications of these criteria to models of opinion dynamics and algorithms of distributed optimization.

Iii Main Results

The first step is to examine time-invariant inequalities (2).

Iii-a A dichotomy criterion for the time-invariant case

In this subsection, we assume that is a constant matrix, whose graph has strongly connected (or strong) components ; in general, arcs between different components may exist (Fig. 1a). A strong component is isolated if no arc enters or leaves it. All strong components are isolated (Fig. 1b) if and only if every arc of the graph belongs to a cycle [28, Theorem 3.2].

Figure 1: Non-isolated (a) vs. isolated (b) strong components
Theorem 1

The inequality (2) with the static matrix is dichotomic if and only if all the strong components of its graph are isolated and aperiodic444Recall that a graph is aperiodic if the greatest common divisor of its cycles’ lengths (that is also referred to as the graph’s period) is equal to .. The inequality is consensus dichotomic if and only if is strongly connected () and aperiodic, or, equivalently, the matrix is primitive [29, 38].

The proof of Theorem 1, as well as the remaining results of this section, is given in Appendix.

Remark 1

Let stand for the set of nodes of . Theorem 1 shows that the time-invariant dichotomic inequality (2) reduces to independent inequalities of lower dimensions


where , and each inequality (4) is consensus dichotomic.

Remark 2

The matrix is primitive if and only if [29, 38, 11] its powers are strictly positive for large .

Iii-B Consensus dichotomy in the time-varying case

In this subsection, we extend the result of Theorem 1 to the case of general time-varying inequality (2). Given , let denote the class of all stochastic matrices , satisfying the two conditions:

  1. for any ;

  2. the graph is strongly connected, where .

In other words, removing from the graph all “light” arcs weighted by less than , the remaining subgraph is strongly connected and has self-loops at each node.

For any integers and let stand for the evolutionary matrix of the equation (3); for convenience, we denote . It is obvious that any solution of (2) satisfies also the family of inequalities

The following theorem provides a consensus dichotomy criterion for the case of the time-varying matrix .

Theorem 2

The inequality (2) is consensus dichotomic if exists that satisfies the following condition: for any there exists such that .

Notice that for the static matrix one has , so the condition from Theorem 2 means that for some . It can be easily shown that in this case is a strictly positive matrix. On the other hand, if is strictly positive for some , then for sufficiently small . In view of Remark 2 and Theorem 1, in the static case the sufficient condition of consensus dichotomy from Theorem 2 is in fact also necessary, boiling down to the primitivity of .

The condition from Theorem 2 is implied by the two standard assumptions on the sequence .

Assumption 1

There exists such that for any

  1. for any ;

  2. for any such that one has .

Assumption 2

(Repeated joint strong connectivity) There exists an integer such that the graph is strongly connected for any .

Corollary 1

Let Assumptions 1 and 2 hold. Then the inequality (2) is consensus dichotomic.

We are going to show that the condition from Theorem 2 holds for and , i.e. for any . Indeed, whenever due to Assumption 1. Supposing that , where , one has , and therefore . Applying this to , one easily notices that is connected to in the graph whenever for some . Assumption 2 implies now that for any .

It should be noticed however that the condition of Theorem 2 may hold in many situations where Assumptions 1 and 2 fail. Even in the static case , the matrix can be primitive yet have zero diagonal entries. The following corollary illustrates another situation where both Assumptions 1 and 2 may fail, whereas Theorem 2 guarantees consensus dichotomy.

Corollary 2

Suppose that for any one has , where stands for the primitive matrix and is a set of stochastic matrices, commuting with : . Let the set be infinite. Then the inequality (2) is consensus dichotomic.

Let be so large that is a positive matrix, whose minimal entry equals . For any , we can find such that the sequence contains elements from the set . Since any commutes with , , where

is some stochastic matrix, and thus all entries of

are not less than .

Many sequences , satisfying the conditions of Corollary 2, fail to satisfy Assumptions 1 and 2. For instance, if then the sequence can contain an arbitrary long subsequence of consecutive identity matrices, which violates Assumption 2. Both the matrix and matrices from may have zero diagonal entries, which also violates Assumption 1. The set can also be non-compact, containing matrices with arbitrary small yet non-zero entries.

Iii-C The case of bidirectional interaction

It is known that in the case of bidirectional graphs the conditions for consensus in the network (3) is reached under very modest connectivity assumptions. Under Assumption 1, consensus is reached if and only if the following relaxed version of Assumption 2 holds [31].

Assumption 3

(Infinite joint strong connectivity) The graph is strongly connected, where

The following result extends this consensus criterion to the condition of consensus dichotomy in the inequality (2).

Theorem 3

Suppose that Assumption 1 and 3 hold and for any one has . Then the inequality (2) is consensus dichotomic.

The relaxation of Assumption 1 in Theorem 3 remains a non-trivial open problem. To the best of the authors’ knowledge, the same applies to usual consensus algorithms (3): most of the existing results for consensus in discrete-time switching networks [31, 30, 32, 2] rely on Assumption 1 or at least require uniformly positive diagonal entries .

Iv Examples and Applications

In this section we apply the criteria from Section III to the analysis of several multi-agent coordination protocols.

Iv-a Modulus consensus in the discrete-time Altafini model

We first consider the discrete-time Altafini model [17, 19] of opinion formation in a signed network. This model is similar to the consensus protocol (3) and is given by


Here the matrix satisfies the following assumption.

Assumption 4

For any , the matrix has non-negative diagonal entries , and the modulus matrix is stochastic.

The non-diagonal entries in (5) may be both positive and negative. Considering the elements as “opinions” of agents, the positive value can be treated as trust or attraction among agents and . In this case, agent shifts its opinion towards the opinion of agent . Similarly, the negative value stands for distrust or repulsion among the agents: the th agent’s opinion is shifted away from the opinion of agent . The central question concerned with the model (5) is reaching consensus in absolute value, or modulus consensus [17].

Definition 2

We say that modulus consensus is established by the protocol (5) if the coincident limits exist

The absolute values obey the inequalities


and hence the vector obeys (2) with . If this recurrent inequality is consensus dichotomic, then modulus consensus in (5) is established. Theorems 2 and 3 yield in in the following criterion.

Theorem 4

Modulus consensus in (5) is established, if the sequence of matrices satisfies the conditions of Theorem 2 or Theorem 3.

In particular, if Assumption 1 holds, then modulus consensus is ensured by the repeated strong connectivity (Assumption 2), which can be relaxed to the infinite strong connectivity (Assumption 3) if the network is bidirectional . Theorem 4 includes thus the results of Theorems 2.1 and 2.2 in [23]. As discussed in Section III, the condition from Theorem 2 holds in many situations where Assumption 1 fails, e.g. may be a constant primitive matrix with zero diagonal entries. Unlike consensus algorithms (3), where the gains are design parameters, the social influence (or “social power”) of an individual over another one depends on many uncertain factors [39], and the uniform positivity of the non-zero gains may become a restrictive assumption.

In general, the assumptions of Theorems 2 and 3 do not guarantee the exponential convergence rate to the equilibrium, which is provided by Assumptions 1 and 2 [19, 25]. In the case of exponential convergence, an additional criterion has been established in [19, 25] (see also Theorem 2.3 in [23]), allowing to distinguish between “degenerate” modulus consensus (asymptotic stability of the linear system (5)) and polarization. In the latter case, the agents split into two “hostile camps” , and the opinions of agents from converge to , where for almost all . If or , then polarization reduces to usual consensus of opinions.

Iv-B Substochastic matrices and the Friedkin-Johnsen model

A non-negative matrix is called substochastic if . We say that the th row of is a deficiency row of if the latter inequality is strict

. Unlike a stochastic matrix, always having an eigenvalue at

, a substochastic square matrix is usually Schur stable . Theorem 1 allows to give an elegant proof of the Schur stability criterion for substochastic matrices [40, 41].

Lemma 1

Let be the graph of a substochastic square matrix and is the subset of its nodes, corresponding to the deficiency rows of . If any node either belongs to the set , or is reachable from it in via some walk, then .

Consider the matrix , defined by

Obviously, is stochastic and when . Hence in the graph each node is connected to any other node and to itself, and hence is aperiodic. The condition of Lemma 1 implies that is also strongly connected. Choosing an arbitrary non-negative vector , the vectors are non-negative for any and satisfy the inequality (2) with . Thanks to Theorem 1, , where . It remains to notice that

is not an eigenvector of

since , and hence . Thus as for any , which implies the Schur stability of since any vector is a difference of two non-negative vectors.

Notice that Lemma 1 implies the following well-known property of substochastic irreducible matrices [38]: if is strongly connected then is either stochastic or Schur stable. The condition from Lemma 1 is not only sufficient but also necessary for the Schur stability [41]. Lemma 1 implies the condition of opinion convergence in the Friedkin-Johnsen model of opinion formation [42, 10, 41]


Here is a stochastic matrix of influence weights, and is a diagonal matrix of the agents’ susceptibilities to the social influence [42], . Without loss of generality, one may suppose that ; in this case agent is stubborn (often it is assumed [42] that ). Another extremal case is , which means that agent “forgets” its initial opinion and iterates the usual procedure of opinion averaging . If , then agent is “partially stubborn” or prejudiced [11, 43]: such an agent adopts the others’ opinions, however it is “attached” to its initial opinion and factors it into every opinion iteration.

If the substochastic matrix is Schur stable, then the opinion vector in (7) converges to the equilibrium


By noticing that the graphs and differ only by the structure of self-loops (recall that unless and ), Lemma 1 implies the following.

Corollary 3

[41] The opinions (8) converge if from each agent with there exists a walk in to some agent with , that is, each agent is either prejudiced or influenced (directly or indirectly) by a prejudiced agent.

Using Theorems 2 and 3, some stability criteria for the time-varying extension [43] of the Friedkin-Johnsen model can be obtained that are beyond the scope of this paper.

Iv-C Constrained consensus

In this subsection, we consider another application of the recurrent inequalities case, related to the problem of constrained or “optimal” consensus that is closely related to distributed convex optimization [44, 45, 46] and distributed algorithms, solving linear equations [47, 48, 49].

For any closed convex set and the projection operator can be defined, mapping a point to the closest element of , i.e. . This implies that (Fig. 2) and


The distance is a convex function.

Figure 2: The projection onto a closed convex set

Consider a group of discrete-time agents with the state vectors . Each agent is associated with a closed convex set (e.g., the set of minima of some convex function). The agents’ cooperative goal is to find some point . To solve this problem, various modifications of the protocol (3) have been proposed. We consider the following three algorithms


Here stands for the sequence of stochastic matrices. The protocol (10) has been proposed in the influential paper [44] (see also [46]), dealing with distributed optimization problems. The special cases of protocols (11) and (12) naturally arise in distributed algorithms, solving linear equations, see respectively [47, 48] and [49]; a randomized version of (12) has been also examined in [45].

Theorem 5

Let the set be closed and convex, and assume that . Suppose that the matrices satisfy Assumptions 1 and 2. Then each of the protocols (10)-(12) establishes constrained consensus:


Due to the page limit, we give only an outline of the proof. By assumption, there exists some . Denote , and let . Under Assumptions 1 and 2, to prove the constrained consensus (13) it suffices to show [46] that


Applying (9) to , , , one gets


and therefore . Each protocol (10)-(12) thus implies the recurrent inequality (2), where . For instance, the equation (10) entails that

Corollary 1 implies the existence of the common limit . We are now going to prove (14) for the protocol (10). The second statement in (14) is obvious since . Substituting into (15),


To prove (14) for the protocol (12), notice that


Recalling that and , it can be shown that and hence . The property (14) for the protocol (11) is proved similarly, combining the arguments from (16) and (17).

V Conclusions

In this paper, we have examined a class of recurrent inequalities (2), inspired by the analysis of “modulus consensus” in signed networks. Under natural connectivity assumptions the inequality is shown to be consensus dichotomic, that is, any of its solution is either unbounded or converges to consensus. Besides signed networks, we illustrate the applications of this profound property to some problems of matrix theory and distributed optimization algorithms.


  • [1] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.
  • [2] W. Ren and R. Beard, Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications.   London: Springer-Verlag, 2008.
  • [3] W. Ren and Y. Cao, Distributed Coordination of Multi-agent Networks.   Springer, 2011.
  • [4] F. Lewis, H. Zhang, K. Hengster-Movris, and A. Das, Cooperative Control of Multi-Agent Systems. Optimal and Adaptive Design Approaches.   London: Springer-Verlag, 2014.
  • [5] L. Pecora, F. Sorrentino, A. Hagerstrom, T. Murphy, and R. Roy, “Cluster synchronization and isolated desynchronization in complex networks with symmetries,” Nature Commun., vol. 5, p. 4079, 2014.
  • [6] O. Popovych, Y. Maistrenko, and P. Tass, “Phase chaos in coupled oscillators,” Phys. Rev. E, vol. 71, p. 065201, 2005.
  • [7] A. Pogromsky, “A partial synchronization theorem,” Chaos, vol. 18, p. 037107, 2008.
  • [8] W. Xia and M. Cao, “Clustering in diffusively coupled networks,” Automatica, vol. 47, no. 11, pp. 2395–2405, 2011.
  • [9] A. Proskurnikov and M. Cao, “A novel homogenous protocol for multi-agent clustering over directed graphs,” in Proc. American Control Conference (ACC), Boston, MA, 2016, pp. 1906–1911.
  • [10] N. Friedkin, “The problem of social control and coordination of complex systems in sociology: A look at the community cleavage problem,” IEEE Control Syst. Mag., vol. 35, no. 3, pp. 40–51, 2015.
  • [11] A. Proskurnikov and R. Tempo, “A tutorial on modeling and analysis of dynamic social networks. Part I,” Annual Reviews in Control, 2017, published online.
  • [12] C.-C. Lin, C.-H. Lee, C.-S. Fuh, H.-F. Juan, and H.-C. Huang, “Link clustering reveals structural characteristics and biological contexts in signed molecular networks,” PLoS One, vol. 8, no. 6, p. e67089, 2013.
  • [13] G. Pache, “Coopetitive supply chains: Toward a social ties perspective,” Management, vol. 18, no. 2, pp. 125–140, 2013.
  • [14] C. Hovland, I. Janis, and H. Kelley, Communication and persuasion.   New Haven: Yale Univ. Press, 1953.
  • [15] C. Altafini, “Dynamics of opinion forming in structurally balanced social networks,” PLoS ONE, vol. 7, no. 6, p. e38135, 2012.
  • [16] ——, “Consensus problems on networks with antagonistic interactions,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 935–946, 2013.
  • [17] Z. Meng, G. Shi, K. Johansson, M. Cao, and Y. Hong, “Modulus consensus over networks with antagonistic interactions and switching topologies,” Publ. online on
  • [18] J. Hendrickx, “A lifting approach to models of opinion dynamics with antagonisms,” in Proc. of IEEE Conference on Decision and Control (CDC), 2014, pp. 2118–2123.
  • [19] J. Liu, X. Chen, T. Başar, and M.-A. Belabbas, “Stability of discrete-time Altafini’s model: a graphical approach,” in Proc. of IEEE Conf. Decision and Control (CDC), 2015, pp. 2835–2840.
  • [20] W. Xia, M. Cao, and K. Johansson, “Structural balance and opinion separation in trust–mistrust social networks,” IEEE Trans. Control Netw. Syst., vol. 3, no. 1, pp. 46–56, 2016.
  • [21] A. Proskurnikov, A. Matveev, and M. Cao, “Opinion dynamics in social networks with hostile camps: Consensus vs. polarization,” IEEE Trans. Autom. Control, vol. 61, no. 6, pp. 1524–1536, 2016.
  • [22] D. Meng, J. Du, and Y. Jia, “Interval bipartite consensus of networked agents associated with signed digraphs,” IEEE Trans. Autom. Control, vol. 61, no. 12, pp. 3755–3770, 2016.
  • [23] Z. Meng, G. Shi, K. Johansson, M. Cao, and Y. Hong, “Behaviors of networks with antagonistic interactions and switching topologies,” Automatica, vol. 73, pp. 110–116, 2016.
  • [24] J. Liu, X. Chen, and T. Başar, “Stability of the continuous-time Altafini model,” in Proc. of Amer. Control Conf. (ACC), 2016, pp. 1931–1935.
  • [25] J. Liu, M. El Chamie, T. Başar, and B. Açikmeşe, “The discrete-time Altafini model of opinion dynamics with communication delays and quantization,” in Proc. of IEEE Conf. Decision and Control, 2016, pp. 3572–3577.
  • [26] A. Proskurnikov and M. Cao, “Dichotomic differential inequalities and multi-agent coordination,” in Proc. European Control Conference (ECC), Aalborg, Denmark, 2016, pp. 230–235.
  • [27] ——, “Differential inequalities in multi-agent coordination and opinion dynamics modeling,” Automatica, conditionally accepted, available at
  • [28] F. Harary, R. Norman, and D. Cartwright, Structural Models. An Introduction to the Theory of Directed Graphs.   Wiley & Sons, 1965.
  • [29] F. Bullo, Lectures on Network Systems.   published online at, 2016, with contributions by J. Cortes, F. Dorfler, and S. Martinez.
  • [30] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Trans. Autom. Control, vol. 48, no. 6, pp. 988–1001, 2003.
  • [31] V. Blondel, J. Hendrickx, A. Olshevsky, and J. Tsitsiklis, “Convergence in multiagent coordination, consensus, and flocking,” in Proc. IEEE Conf. Decision and Control, 2005, pp. 2996 – 3000.
  • [32] M. Cao, A. Morse, and B. Anderson, “Reaching a consensus in a dynamically changing environment: a graphical approach,” SIAM J. Control Optim., vol. 47, no. 2, pp. 575–600, 2008.
  • [33] J. French Jr., “A formal theory of social power,” The Physchological Review, vol. 63, pp. 181–194, 1956.
  • [34] F. Harary, “A criterion for unanimity in French’s theory of social power,” in Studies in Social Power, D. Cartwright, Ed.   Ann Arbor, MI: Inst. for Social Research, 1959, pp. 168–182.
  • [35] M. DeGroot, “Reaching a consensus,” Journal of the American Statistical Association, vol. 69, pp. 118–121, 1974.
  • [36] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and stochastic gradient optimization algorithms,” IEEE Trans. Autom. Control, vol. 31, no. 9, pp. 803–812, 1986.
  • [37] V. A. Yakubovich, “Dichotomy and absolute stability of nonlinear systems with periodically nonstationary linear part,” Systems Control Lett., vol. 11, no. 3, pp. 221–228, 1988.
  • [38] C. Meyer, Matrix Analysis and Applied Linear Algebra.   SIAM, 2000.
  • [39] J. French and B. Raven, “The bases of social power,” in Studies in Social Power, D. Cartwright, Ed.   Ann Arbor, MI: Inst. for Social Research, 1959, pp. 150–167.
  • [40] P. Frasca, C. Ravazzi, R. Tempo, and H. Ishii, “Gossips and prejudices: Ergodic randomized dynamics in social networks,” in Proc. of IFAC NecSys 2013 Workshop, Koblenz, Germany, 2013, pp. 212–219.
  • [41] S. Parsegov, A. Proskurnikov, R. Tempo, and N. Friedkin, “Novel multidimensional models of opinion dynamics in social networks,” IEEE Trans. Autom. Control, vol. 62, no. 5, 2017, (publ. online).
  • [42] N. Friedkin and E. Johnsen, “Social influence networks and opinion change,” in Advances in Group Processes, S. Thye, E. Lawler, M. Macy, and H. Walker, Eds., 1999, vol. 16, pp. 1–29.
  • [43] A. Proskurnikov, R. Tempo, M. Cao, and N. Friedkin, “Opinion evolution under time-varying social influence with individual prejudices: from consensus to disagreement,” in Proc. of IFAC World Congress, Toulouse, France, 2017.
  • [44] A. Nedic, A. Ozdaglar, and P. Parrilo, “Constrained consensus and optimization in multi-agent networks,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 922–938, 2010.
  • [45] G. Shi and K. Johansson, “Randomized optimal consensus of multi-agent systems,” Automatica, vol. 48, pp. 3018–3030, 2012.
  • [46] P. Lin and W. Ren, “Constrained consensus in unbalanced networks with communication delays,” IEEE Trans. Autom. Control, vol. 59, no. 3, pp. 775–781, 2014.
  • [47] J. Liu, A. Morse, A. Nedić, and T. Başar, “Stability of a distributed algorithm for solving linear algebraic equations,” in Proc. of IEEE Conference on Decision and Control (CDC), 2014, pp. 3707–3712.
  • [48] S. Mou, J. Liu, and A. Morse, “A distributed algorithm for solving a linear algebraic equation,” IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 2863–2878, 2015.
  • [49] K. You, S. Song, and R. Tempo, “A networked parallel algorithm for solving linear algebraic equations,” in Proc. of IEEE Conf. Decision and Control, 2016, pp. 1727–1732.

Proofs of Theorems 1-3

Although the results of Theorems 1-3 resemble usual criteria of convergence for consensus protocols (3), their proofs are based on different techniques, which are inspired by the analysis of differential inequalities from [26, 27]. Given a solution of (2), let be the permutation of the indices , sorting the elements of in the ascending order. In other words, the numbers satisfy the inequalities

We also introduce the sets and (where ). Recall that stands for the evolutionary matrix of the linear equation (3).

We start with the following simple proposition.

Proposition 2

For any , and the inequality holds as follows

In particular, for the case where one has


The proof is immediate from the inequalities

by noticing that for any .

Lemma 2

Suppose that for some and one has . Then for any one has


The definition of the set and (2) imply that for any since and . Since the graph is strongly connected, there exist some and such that , and thus due to (2). This entails (19) since the set contains elements.

The statement of Lemma 2 retains its validity, replacing the condition from Theorem 2 by the assumptions of Theorem 3. However, in this situation should be chosen in a different way and depends on both and .

Lemma 3

Let Assumptions 1 and 3 hold and the communication be bidirectional . Then for all , there exists such that


where is the constant from Assumption 1.

For a fixed and , we denote for brevity and . Assumption 3 implies the existence of such that (and thus ) for some and . Let stand for the minimum of such (that is, ). Since for any , one has for any pair . Hence

Applying (18) to and , one has . At the same time, there exist such that . In view of (18), . This entails (20) since the set contains elements.

-a Proofs of Theorems 2 and 3

Consider a bounded solution of (2) and its ordering . The inequality (2) implies, obviously, that , and therefore there exists the limit . Our goal is to show that for any , provided that the assumptions of either Theorem 2 or Theorem 3 are valid. The proof is via induction on . For the statement holds. Suppose that for ; we are now going to prove that as . Since , it suffices to show that . Suppose, on the contrary, that , that is, there exist a sequence and , such that .

As implied by Lemma 2 (respectively, Lemma 3), under the assumptions of Theorem 2 (respectively, Theorem 3), a sequence and a constant exist such that

Passing to the limit as , one arrives at

which is a contradiction. Thus as , which proves the induction step. Therefore, the solution converges to a consensus equilibrium .

-B Proof of Theorem 1

The sufficiency part is immediate from Remark 2 and Theorem 2. Indeed, if the graph is strongly connected and aperiodic, then is a strictly positive matrix for some , so the condition of Theorem 2 holds: for some . Hence the inequality (2) is consensus dichotomic. If the graph is constituted by isolated and aperiodic strongly connected components, then (2) is dichotomic, reducing to independent consensus dichotomic inequalities of lower dimensions.

To prove necessity, consider a dichotomic inequality (2) with and let , that is, is connected to in the graph . Let the set include node and all nodes that are reachable from by walks. We are going to show that , that is, and belong to the same strong component. Suppose, on the contrary, that and let

Here is chosen sufficiently large so that . It can be easily shown that the vector is a solution to (2). Indeed, for any and one obviously has (otherwise, would be reachable from via ). Therefore, . For any we have . Finally,