Modulation Design for Wireless Information and Power Transfer with Nonlinear Energy Harvester Modeling

02/19/2018
by   Ekaterina Bayguzina, et al.
0

Far-field wireless power transfer (WPT) and simultaneous wireless information and power transfer (SWIPT) have become increasingly important in radio frequency (RF) and communication communities recently. The problem of modulation design for SWIPT has however been scarcely addressed. In this paper, a modulation scheme based on asymmetric phase-shift keying (PSK) is considered, which improves the SWIPT rate-energy tradeoff region significantly. The nonlinear rectifier model, which accurately models the energy harvester, is adopted for evaluating the output direct current (DC) power at the receiver. The harvested DC power is maximized under an average power constraint at the transmitter and a constraint on the rate of information transmitted via a multi-carrier signal over a flat fading channel. As a consequence of the rectifier nonlinearity, this work highlights that asymmetric PSK modulation provides benefits over conventional symmetric PSK modulation in SWIPT and opens the door to systematic modulation design tailored for SWIPT.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro