Modularity Improves Out-of-Domain Instruction Following

10/24/2020
by   Rodolfo Corona, et al.
3

We propose a modular architecture for following natural language instructions that describe sequences of diverse subgoals, such as navigating to landmarks or picking up objects. Standard, non-modular, architectures used in instruction following do not exploit subgoal compositionality and often struggle on out-of-distribution tasks and environments. In our approach, subgoal modules each carry out natural language instructions for a specific subgoal type. A sequence of modules to execute is chosen by learning to segment the instructions and predicting a subgoal type for each segment. When compared to standard sequence-to-sequence approaches on ALFRED, a challenging instruction following benchmark, we find that modularization improves generalization to environments unseen in training and to novel tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset