Modular structure of the Weyl algebra

11/22/2021
by   Roberto Longo, et al.
0

We study the modular Hamiltonian associated with a Gaussian state on the Weyl algebra. We obtain necessary/sufficient criteria for the local equivalence of Gaussian states, independently of the classical results by Araki and Yamagami, Van Daele, Holevo. We also present a criterion for a Bogoliubov automorphism to be weakly inner in the GNS representation. The main application of our analysis is the description of the vacuum modular Hamiltonian associated with a time-zero interval in the scalar, massive, free QFT in two spacetime dimensions, thus complementing recent results in higher space dimensions. In particular, we have the formula for the local entropy of a one dimensional Klein-Gordon wave packet and Araki's vacuum relative entropy of a coherent state on a double cone von Neumann algebra. Besides, we derive the type III_1 factor property. Incidentally, we run across certain positive selfadjoint extensions of the Laplacian, with outer boundary conditions, seemingly not considered so far.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro