Modular Decomposition of Graphs and the Distance Preserving Property

05/24/2018
by   Emad Zahedi, et al.
0

Given a graph G, a subgraph H is isometric if d_H(u,v) = d_G(u,v) for every pair u,v∈ V(H), where d is the distance function. A graph G is distance preserving (dp) if it has an isometric subgraph of every possible order. A graph is sequentially distance preserving (sdp) if its vertices can be ordered such that deleting the first i vertices results in an isometric subgraph, for all i>1. We introduce a generalisation of the lexicographic product of graphs, which can be used to non-trivially describe graphs. This generalisation is the inverse of the modular decomposition of graphs, which divides the graph into disjoint clusters called modules. Using these operations, we give a necessary and sufficient condition for graphs to be dp. Finally, we show that the Cartesian product of a dp graph and an sdp graph is dp.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro