Modern Methods for Signal Analysis: Empirical Mode Decomposition Theory and Hybrid Operator-Based Methods Using B-Splines

02/07/2023
by   Laslo Hunhold, et al.
0

This thesis examines the empirical mode decomposition (EMD), a method for decomposing multicomponent signals, from a modern, both theoretical and practical, perspective. The motivation is to further formalize the concept and develop new methods to approach it numerically. The theoretical part introduces a new formalization of the method as an optimization problem over ordered function vector spaces. Using the theory of 'convex-like' optimization and B-splines, Slater-regularity and thus strong duality of this optimization problem is shown. This results in a theoretical justification for the modern null-space-pursuit (NSP) operator-based signal-separation (OSS) EMD-approach for signal decomposition and spectral analysis. The practical part considers the identified strengths and weaknesses in OSS and NSP and proposes a hybrid EMD method that utilizes these modern, but also classic, methods, implementing them in a toolbox called ETHOS (EMD Toolbox using Hybrid Operator-Based Methods and B-splines) and applying them to comparative examples. In the course of this part a new envelope estimation method called 'iterative slope envelope estimation' is proposed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro