Modeling the Field Value Variations and Field Interactions Simultaneously for Fraud Detection

08/08/2020 ∙ by Dongbo Xi, et al. ∙ 0

With the explosive growth of e-commerce, online transaction fraud has become one of the biggest challenges for e-commerce platforms. The historical behaviors of users provide rich information for digging into the users' fraud risk. While considerable efforts have been made in this direction, a long-standing challenge is how to effectively exploit internal user information and provide explainable prediction results. In fact, the value variations of same field from different events and the interactions of different fields inside one event have proven to be strong indicators for fraudulent behaviors. In this paper, we propose the Dual Importance-aware Factorization Machines (DIFM), which exploits the internal field information among users' behavior sequence from dual perspectives, i.e., field value variations and field interactions simultaneously for fraud detection. The proposed model is deployed in the risk management system of one of the world's largest e-commerce platforms, which utilize it to provide real-time transaction fraud detection. Experimental results on real industrial data from different regions in the platform clearly demonstrate that our model achieves significant improvements compared with various state-of-the-art baseline models. Moreover, the DIFM could also give an insight into the explanation of the prediction results from dual perspectives.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.