Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis
Event analysis in untrimmed videos has attracted increasing attention due to the application of cutting-edge techniques such as CNN. As a well studied property for CNN-based models, the receptive field is a measurement for measuring the spatial range covered by a single feature response, which is crucial in improving the image categorization accuracy. In video domain, video event semantics are actually described by complex interaction among different concepts, while their behaviors vary drastically from one video to another, leading to the difficulty in concept-based analytics for accurate event categorization. To model the concept behavior, we study temporal concept receptive field of concept-based event representation, which encodes the temporal occurrence pattern of different mid-level concepts. Accordingly, we introduce temporal dynamic convolution (TDC) to give stronger flexibility to concept-based event analytics. TDC can adjust the temporal concept receptive field size dynamically according to different inputs. Notably, a set of coefficients are learned to fuse the results of multiple convolutions with different kernel widths that provide various temporal concept receptive field sizes. Different coefficients can generate appropriate and accurate temporal concept receptive field size according to input videos and highlight crucial concepts. Based on TDC, we propose the temporal dynamic concept modeling network (TDCMN) to learn an accurate and complete concept representation for efficient untrimmed video analysis. Experiment results on FCVID and ActivityNet show that TDCMN demonstrates adaptive event recognition ability conditioned on different inputs, and improve the event recognition performance of Concept-based methods by a large margin. Code is available at https://github.com/qzhb/TDCMN.
READ FULL TEXT