Modeling complex species-environment relationships through spatially-varying coefficient occupancy models

08/04/2023
by   Jeffrey W. Doser, et al.
0

Occupancy models are frequently used by ecologists to quantify spatial variation in species distributions while accounting for observational biases in the collection of detection-nondetection data. However, the common assumption that a single set of regression coefficients can adequately explain species-environment relationships is often unrealistic, especially across large spatial domains. Here we develop single-species (i.e., univariate) and multi-species (i.e., multivariate) spatially-varying coefficient (SVC) occupancy models to account for spatially-varying species-environment relationships. We employ Nearest Neighbor Gaussian Processes and Polya-Gamma data augmentation in a hierarchical Bayesian framework to yield computationally efficient Gibbs samplers, which we implement in the spOccupancy R package. For multi-species models, we use spatial factor dimension reduction to efficiently model datasets with large numbers of species (e.g., > 10). The hierarchical Bayesian framework readily enables generation of posterior predictive maps of the SVCs, with fully propagated uncertainty. We apply our SVC models to quantify spatial variability in the relationships between maximum breeding season temperature and occurrence probability of 21 grassland bird species across the U.S. Jointly modeling species generally outperformed single-species models, which all revealed substantial spatial variability in species occurrence relationships with maximum temperatures. Our models are particularly relevant for quantifying species-environment relationships using detection-nondetection data from large-scale monitoring programs, which are becoming increasingly prevalent for answering macroscale ecological questions regarding wildlife responses to global change.

READ FULL TEXT

page 35

page 37

research
11/23/2021

spOccupancy: An R package for single species, multispecies, and integrated spatial occupancy models

Occupancy modeling is a common approach to assess spatial and temporal s...
research
01/13/2023

Guidelines for the use of spatially-varying coefficients in species distribution models

Species distribution models (SDMs) are increasingly applied across macro...
research
07/30/2021

Fast Bayesian inference for large occupancy data sets, using the Polya-Gamma scheme

In recent years, the study of species' occurrence has benefited from the...
research
05/05/2020

Fish should not be in isolation: Calculating maximum sustainable yield using an ensemble model

Many jurisdictions have a legal requirement to manage fish stocks to max...
research
06/17/2020

Using machine learning to identify nontraditional spatial dependence in occupancy data

Occupancy data are spatially referenced contaminated binary responses us...
research
03/11/2020

A new method for faster and more accurate inference of species associations from novel community data

Joint Species Distribution models (jSDMs) explain spatial variation in c...
research
11/13/2022

Flexible Basis Representations for Modeling High-Dimensional Hierarchical Spatial Data

Nonstationary and non-Gaussian spatial data are prevalent across many fi...

Please sign up or login with your details

Forgot password? Click here to reset