Modeling Cognitive Processes in Social Tagging to Improve Tag Recommendations

05/30/2018
by   Dominik Kowald, et al.
0

With the emergence of Web 2.0, tag recommenders have become important tools, which aim to support users in finding descriptive tags for their bookmarked resources. Although current algorithms provide good results in terms of tag prediction accuracy, they are often designed in a data-driven way and thus, lack a thorough understanding of the cognitive processes that play a role when people assign tags to resources. This thesis aims at modeling these cognitive dynamics in social tagging in order to improve tag recommendations and to better understand the underlying processes. As a first attempt in this direction, we have implemented an interplay between individual micro-level (e.g., categorizing resources or temporal dynamics) and collective macro-level (e.g., imitating other users' tags) processes in the form of a novel tag recommender algorithm. The preliminary results for datasets gathered from BibSonomy, CiteULike and Delicious show that our proposed approach can outperform current state-of-the-art algorithms, such as Collaborative Filtering, FolkRank or Pairwise Interaction Tensor Factorization. We conclude that recommender systems can be improved by incorporating related principles of human cognition.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset