Modeling, Characterization, and Control of Bacteria-inspired Bi-flagellated Mechanism with Tumbling

06/30/2023
by   Zhuonan Hao, et al.
0

Multi-flagellated bacteria utilize the hydrodynamic interaction between their filamentary tails, known as flagella, to swim and change their swimming direction in low Reynolds number flow. This interaction, referred to as bundling and tumbling, is often overlooked in simplified hydrodynamic models such as Resistive Force Theories (RFT). However, for the development of efficient and steerable robots inspired by bacteria, it becomes crucial to exploit this interaction. In this paper, we present the construction of a macroscopic bio-inspired robot featuring two rigid flagella arranged as right-handed helices, along with a cylindrical head. By rotating the flagella in opposite directions, the robot's body can reorient itself through repeatable and controllable tumbling. To accurately model this bi-flagellated mechanism in low Reynolds flow, we employ a coupling of rigid body dynamics and the method of Regularized Stokeslet Segments (RSS). Unlike RFT, RSS takes into account the hydrodynamic interaction between distant filamentary structures. Furthermore, we delve into the exploration of the parameter space to optimize the propulsion and torque of the system. To achieve the desired reorientation of the robot, we propose a tumble control scheme that involves modulating the rotation direction and speed of the two flagella. By implementing this scheme, the robot can effectively reorient itself to attain the desired attitude. Notably, the overall scheme boasts a simplified design and control as it only requires two control inputs. With our macroscopic framework serving as a foundation, we envision the eventual miniaturization of this technology to construct mobile and controllable micro-scale bacterial robots.

READ FULL TEXT

page 1

page 2

page 6

research
10/07/2018

Control of uniflagellar soft robots at low Reynolds number using buckling instability

In this paper, we analyze the inverse dynamics and control of a bacteria...
research
09/09/2021

A Unified Model with Inertia Shaping for Highly Dynamic Jumps of Legged Robots

To achieve highly dynamic jumps of legged robots, it is essential to con...
research
11/24/2021

Bacteria Inspired Multi-Flagella Propelled Soft Robot at Low Reynolds Number

The locomotion and mechanical efficiency of micro organisms, specificall...
research
11/27/2019

A Benchmarking of DCM Based Architectures for Position, Velocity and Torque Controlled Humanoid Robots

This paper contributes towards the benchmarking of control architectures...
research
09/06/2018

A Benchmarking of DCM Based Architectures for Position and Velocity Controlled Walking of Humanoid Robots

This paper contributes towards the development and comparison of Diverge...
research
07/05/2023

RBDCore: Robot Rigid Body Dynamics Accelerator with Multifunctional Pipelines

Rigid body dynamics is a key technology in the robotics field. In trajec...
research
11/06/2021

Swarm Control of Magnetically Actuated Millirobots

Small-size robots offer access to spaces that are inaccessible to larger...

Please sign up or login with your details

Forgot password? Click here to reset