Modeling and Exploration of Gain Competition Attacks in Optical Network-on-Chip Architectures
Network-on-Chip (NoC) enables energy-efficient communication between numerous components in System-on-Chip architectures. The optical NoC is widely considered a key technology to overcome the bandwidth and energy limitations of traditional electrical on-chip interconnects. While optical NoC can offer high performance, they come with inherent security vulnerabilities due to the nature of optical interconnects. In this paper, we investigate the gain competition attack in optical NoCs, which can be initiated by an attacker injecting a high-power signal to the optical waveguide, robbing the legitimate signals of amplification. To the best of our knowledge, our proposed approach is the first attempt to investigate gain competition attacks as a security threat in optical NoCs. We model the attack and analyze its effects on optical NoC performance. We also propose potential attack detection techniques and countermeasures to mitigate the attack. Our experimental evaluation using different NoC topologies and diverse traffic patterns demonstrates the effectiveness of our modeling and exploration of gain competition attacks in optical NoC architectures.
READ FULL TEXT