Model Identification via Physics Engines for Improved Policy Search
This paper presents a practical approach for identifying unknown mechanical parameters, such as mass and friction models of manipulated rigid objects or actuated robotic links, in a succinct manner that aims to improve the performance of policy search algorithms. Key features of this approach are the use of off-the-shelf physics engines and the adaptation of a black-box Bayesian optimization framework for this purpose. The physics engine is used to reproduce in simulation experiments that are performed on a real robot, and the mechanical parameters of the simulated system are automatically fine-tuned so that the simulated trajectories match with the real ones. The optimized model is then used for learning a policy in simulation, before safely deploying it on the real robot. Given the well-known limitations of physics engines in modeling real-world objects, it is generally not possible to find a mechanical model that reproduces in simulation the real trajectories exactly. Moreover, there are many scenarios where a near-optimal policy can be found without having a perfect knowledge of the system. Therefore, searching for a perfect model may not be worth the computational effort in practice. The proposed approach aims then to identify a model that is good enough to approximate the value of a locally optimal policy with a certain confidence, instead of spending all the computational resources on searching for the most accurate model. Empirical evaluations, performed in simulation and on a real robotic manipulation task, show that model identification via physics engines can significantly boost the performance of policy search algorithms that are popular in robotics, such as TRPO, PoWER and PILCO, with no additional real-world data.
READ FULL TEXT