Model-Checking for First-Order Logic with Disjoint Paths Predicates in Proper Minor-Closed Graph Classes

11/03/2022
by   Petr A. Golovach, et al.
0

The disjoint paths logic, FOL+DP, is an extension of First-Order Logic (FOL) with the extra atomic predicate dp_k(x_1,y_1,…,x_k,y_k), expressing the existence of internally vertex-disjoint paths between x_i and y_i, for i∈{1,…, k}. This logic can express a wide variety of problems that escape the expressibility potential of FOL. We prove that for every proper minor-closed graph class, model-checking for FOL+DP can be done in quadratic time. We also introduce an extension of FOL+DP, namely the scattered disjoint paths logic, FOL+SDP, where we further consider the atomic predicate s -sdp_k(x_1,y_1,…,x_k,y_k), demanding that the disjoint paths are within distance bigger than some fixed value s. Using the same technique we prove that model-checking for FOL+SDP can be done in quadratic time on classes of graphs with bounded Euler genus.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset