Model-Based Identification and Control of a One-Legged Hopping Robot

02/26/2018
by   Hasan Eftun Orhon, et al.
0

Spring-mass models are well established tools for the analysis and control of legged locomotion. Among the alternatives, spring-loaded inverted pendulum (SLIP) model has shown to be a very accurate descriptor of animal locomotion. Despite its wide use, the SLIP model includes non-integrable stance dynamics that prevent analytical solutions for its equations of motion. Fortunately, there are approximate analytical solutions for different SLIP variants. However, the practicality of such approximations are mostly tested on simulation studies with a few notable exceptions. This thesis extends upon a recent approximation to a hip torque actuated dissipative SLIP (TD-SLIP) model that uses torque actuation to compensate for energy losses. Systematic experiments for careful assessment of the predictive performance of the approximate analytical solution is presented on a well-instrumented one-legged hopping robot which is revised to enhance compatibility and accuracy of the system. Electronic structure of the robot is modified according to TD-SLIP model such that robot uses a real-time operating system to increase processing speed. Using the parameters and results generated by the predictive performance of the approximate analytical solution, a model-based controller is designed and implemented on the robot platform to generate a stable closed-loop running behaviour on the one legged hoping robot platform. In addition, ground reaction forces during the stance phase on the experimental platform is investigated and compared with the human running and the traditional SLIP model data to understand if torque-actuated models approximate natural locomotion better than traditional model.

READ FULL TEXT

page 33

page 36

research
10/23/2019

Impact-Aware Online Motion Planning for Fully-Actuated Bipedal Robot Walking

Planning and control of legged robots is a difficult problem due to hybr...
research
01/08/2023

Real-Time Walking Pattern Generation of Quadrupedal Dynamic-Surface Locomotion based on a Linear Time-Varying Pendulum Model

This study introduces an analytically tractable and computationally effi...
research
09/20/2019

Trunk Pitch Oscillations to Improve Energetics in Bipedal Running Birds and Robots

Bipedal animals have diverse morphologies and advanced locomotion abilit...
research
01/31/2022

DRS-LIP: Linear Inverted Pendulum Model for Legged Locomotion on Dynamic Rigid Surfaces

Legged robot locomotion on a dynamic rigid surface (i.e., a rigid surfac...
research
09/14/2019

Highly Dynamic Quadruped Locomotion via Whole-Body Impulse Control and Model Predictive Control

Dynamic legged locomotion is a challenging topic because of the lack of ...
research
04/16/2020

Predictive Whole-Body Control of Humanoid Robot Locomotion

Humanoid robots are machines built with an anthropomorphic shape. Despit...
research
11/18/2020

An analytical diabolo model for robotic learning and control

In this paper, we present a diabolo model that can be used for training ...

Please sign up or login with your details

Forgot password? Click here to reset