Model-Based Diagnosis using Structured System Descriptions

06/01/1998 ∙ by A. Darwiche, et al. ∙ 0

This paper presents a comprehensive approach for model-based diagnosis which includes proposals for characterizing and computing preferred diagnoses, assuming that the system description is augmented with a system structure (a directed graph explicating the interconnections between system components). Specifically, we first introduce the notion of a consequence, which is a syntactically unconstrained propositional sentence that characterizes all consistency-based diagnoses and show that standard characterizations of diagnoses, such as minimal conflicts, correspond to syntactic variations on a consequence. Second, we propose a new syntactic variation on the consequence known as negation normal form (NNF) and discuss its merits compared to standard variations. Third, we introduce a basic algorithm for computing consequences in NNF given a structured system description. We show that if the system structure does not contain cycles, then there is always a linear-size consequence in NNF which can be computed in linear time. For arbitrary system structures, we show a precise connection between the complexity of computing consequences and the topology of the underlying system structure. Finally, we present an algorithm that enumerates the preferred diagnoses characterized by a consequence. The algorithm is shown to take linear time in the size of the consequence if the preference criterion satisfies some general conditions.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.